Two classes of chromatically unique graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classes of chromatically unique graphs

Borowiecki, M. and E. Drgas-Burchardt, Classes of chromatically unique graphs, Discrete Mathematics Ill (1993) 71-75. We prove that graphs obtained from complete equibipartite graphs by deleting some independent sets of edges are chromatically unique. 1. Preliminary definitions and results In this paper we consider finite, undirected, simple and loopless graphs. Two graphs G and H are said to b...

متن کامل

Chromatically Unique Multibridge Graphs

Let θ(a1, a2, · · · , ak) denote the graph obtained by connecting two distinct vertices with k independent paths of lengths a1, a2, · · · , ak respectively. Assume that 2 ≤ a1 ≤ a2 ≤ · · · ≤ ak. We prove that the graph θ(a1, a2, · · · , ak) is chromatically unique if ak < a1 + a2, and find examples showing that θ(a1, a2, · · · , ak) may not be chromatically unique if ak = a1 + a2.

متن کامل

Chromatically Supremal Decompositions of Graphs

If G is a graph, a G-decomposition of a host graph H is a partition of the edges of H into subgraphs of H which are isomorphic to G. The chromatic index of a Gdecomposition of H is the minimum number of colors required to color the parts of the decomposition so that parts which share a common node get different colors. We establish an upper bound on the chromatic index and characterize those de...

متن کامل

On k-chromatically connected graphs

A graph G is chromatically k–connected if every vertex cutset induces a subgraph with chromatic number at least k. Thus, in particular each neighborhood has to induce a k–chromatic subgraph. In [3], Godsil, Nowakowski and Nešetřil asked whether there exists a k–chromatically connected graph such that every minimal cutset induces a subgraph with no triangles. We show that the answer is positive ...

متن کامل

Chromatically Unique Bipartite Graphs with Certain 3-independent Partition Numbers II

Abstract. For integers p, q, s with p ≥ q ≥ 2 and s ≥ 0, let K−s 2 (p, q) denote the set of 2−connected bipartite graphs which can be obtained from Kp,q by deleting a set of s edges. In this paper, we prove that for any graph G ∈ K−s 2 (p, q) with p ≥ q ≥ 3 and 1 ≤ s ≤ q−1, if the number of 3-independent partitions of G is 2p−1 + 2q−1 + s + 4, then G is chromatically unique. This result extends...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1990

ISSN: 0012-365X

DOI: 10.1016/0012-365x(90)90041-f